How to Complete a Doubling Metric
نویسندگان
چکیده
In recent years, considerable advances have been made in the study of properties of metric spaces in terms of their doubling dimension. This line of research has not only enhanced our understanding of finite metrics, but has also resulted in many algorithmic applications. However, we still do not understand the interaction between various graph-theoretic (topological) properties of graphs, and the doubling (geometric) properties of the shortest-path metrics induced by them. For instance, the following natural question suggests itself: given a finite doubling metric (V, d), is there always an unweighted graph (V , E) with V ⊆ V ′ such that the shortest path metric d on V ′ is still doubling, and which agrees with d on V . This is often useful, given that unweighted graphs are often easier to reason about. A first hurdle to answering this question is that subdividing edges can increase the doubling dimension unboundedly, and it is not difficult to show that the answer to the above question is negative. However, surprisingly, allowing a (1 + ε) distortion between d and d enables us bypass this impossibility: we show that for any metric space (V, d), there is an unweighted graph (V , E) with shortest-path metric d : V ′ × V ′ → R≥0 such that • for all x, y ∈ V , the distances d(x, y) ≤ d(x, y) ≤ (1 + ε) · d(x, y), and • the doubling dimension for d is not much more than that of d, where this change depends only on ε and not on the size of the graph. We show a similar result when both (V, d) and (V , E) are restricted to be trees: this gives a simpler proof that doubling trees embed into constant dimensional Euclidean space with constant distortion. We also show that our results are tight in terms of the tradeoff between distortion and dimension blowup. Computer Science Department, Carnegie Mellon University, Pittsburgh, PA 15213. This research was partly supported by the NSF CAREER award CCF-0448095, and by an Alfred P. Sloan Fellowship. Microsoft Research, Silicon Valley Campus, 1065 La Avenida, Mountain View, CA 94043.
منابع مشابه
Note on Bounded Degree Spanners for Doubling Metrics
We focus on obtaining sparse representations of metrics: these are called spanners, and they have been studied extensively both for general and Euclidean metrics. Formally, a t-spanner for a metric M = (V, d) is an undirected graph G = (V,E) such that the distances according to dG (the shortest-path metric of G) are close to the distances in d: i.e., d(u, v) ≤ dG(u, v) ≤ t d(u, v). Clearly, one...
متن کاملQuadratic Estimates for Perturbed Dirac Type Operators on Doubling Measure Metric Spaces
We consider perturbations of Dirac type operators on complete, connected metric spaces equipped with a doubling measure. Under a suitable set of assumptions, we prove quadratic estimates for such operators and hence deduce that these operators have a bounded functional calculus. In particular, we deduce a Kato square root type estimate.
متن کاملFixed Point Theorems on Complete Quasi Metric Spaces Via C-class and A-Class Functions
In this paper, we present some fixed point theorems for single valued mappings on $K$-complete, $M$-complete and Symth complete quasi metric spaces. Here, for contractive condition, we consider some altering distance functions together with functions belonging to $C$-class and $A$-class. At the same time, we will consider two different type $M$ functions in contractive conditions because the qu...
متن کاملQuasiopen and p-Path Open Sets, and Characterizations of Quasicontinuity
In this paper we give various characterizations of quasiopen sets and quasicontinuous functions on metric spaces. For complete metric spaces equipped with a doubling measure supporting a p-Poincaré inequality we show that quasiopen and p-path open sets coincide. Under the same assumptions we show that all Newton-Sobolev functions on quasiopen sets are quasicontinuous.
متن کاملDifferentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property
In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008